

This document is a verification report of CUBRID 2008 R4.1 Patch1 in terms of functionality, performance,

stability.

CUBRID 2008 R4.1 Patch1 QA
Completion Report

CUBRID 2008 R4.1 QA Completion Report

2

Table of Contents

CUBRID 2008 R4.1 Patch1 QA Completion Report ________________________________ 1

1. Test Overview __ 4

1.1 Test Objectives __ 5

1.2 Test Environment __ 5

1.2.1 TEST PROCEDURES ___ 5

1.2.2 HARDWARE TEST ENVIRONMENT ___ 8

1.3 Test Category ___ 8

2. Test Results __ 10

2.1 Functionality Test Results __ 11

2.1.1 BASIC QUERY TESTS ___ 11

2.1.2 BASIC UTILITY AND OTHER SCENARIO TESTS __ 11

2.1.3 HA FEATURE TESTS __ 11

2.2 Performance Test Results __ 13

2.2.1 CUBRID BASIC PERFORMANCE TEST ___ 13

2.2.2 YCSB PERFORMANCE TEST ___ 16

2.2.3 NBD BENCHMARK PERFORMANCE TEST ___ 22

2.3 Stability Test Results __ 24

2.4 Other Test Results ___ 25

2.5 Quality Index __ 26

3. Conclusions __ 27

Appendix __ 29

I. Functionality Test Scenarios ___ 30

CUBRID 2008 R4.1 QA Completion Report

3

II. Performance Test Scenario __ 33

III. Stability Test Scenario ___ 39

IV. Scenario-based Code Coverage Results __ 41

1.Test Overview

CUBRID 2008 R4.1 QA Completion Report

5

 Test Objectives 1.1

The objectives of this test are to perform functionality, performance and stability tests for the final

release candidate build of CUBRID 2008 R4.1 Patch1 (hereinafter referred to as R4.1 Patch1), which is

under development for release in February 2012 and to determine its release based on the test results.

To test the stability of CUBRID, a test environment was configured as described below. Based on a

comparison between the performance test result of CUBRID 2008 R4.1 Patch1 and that of CUBRID 2008

R4.0 Patch2 (hereinafter referred to as R4.0 Patch2), we tested to determine whether the performance of

R4.1 Patch1 was regressed or improved.

 CentOS 5.5 (32/64-bit) or compatible

 CentOS 5.3 (32/64-bit) or compatible

 Windows 2003 (32/64-bit) or compatible

 Final test build: 8.4.1.1018 (Linux 64-bit/32-bit, Windows 64-bit/32-bit)

 Test Environment 1.2

 Test Procedures 1.2.1

Tests to verify the CUBRID product are shown below. The test sequence used may different from the one

described here. To verify product stability and functionality, performance, functionality, stability and

other tests were performed for 4 types of builds as shown in the figure below. The details of each test

are described in the appendix of this report.

CUBRID 2008 R4.1 QA Completion Report

6

Figure 1. CUBRID Test Procedure

Figure 2. System diagram for basic test

CUBRID 2008 R4.1 QA Completion Report

7

Figure 3. System diagram for HA test

CUBRID 2008 R4.1 QA Completion Report

8

 Hardware Test Environment 1.2.2

Servers for the CUBRID test and their usage are listed in the table below.

 Test Category 1.3

The following tests were performed to determine whether CUBRID can be released. The details of each

test are described in the appendix of this report.

 Functionality test

 SQL query test

 MEDIUM query test

 SITE query test

 Utility (Shell) test

 Basic HA feature test

 CCI/PHP/JDBC Interface test

 Performance test

 Performance test for basic DBMS functions

 YCSB Benchmark

 NBD Benchmark

 Stability test

 DOTS stress test

 HA Enhancement

 TPC-W test

Name OS CPU MEMORY DISK

 Host 1 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 core) * 1 16 GB SAS 600G * 3 (Raid5)

 Host 2 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 core) * 1 16 GB SAS 600G * 3 (Raid5)

 Host 3 Cent OS 5.3 (64-bit) Xeon(R) 2.4 GHz (12 core) * 1 16 GB SAS 600G * 3 (Raid5)

 Host 4 Windows 2003 (64-bit) Xeon 2.10 GHz (quadcore) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 5 Windows 2003 (32-bit) Xeon 2.10 GHz (quadcore) * 1 4 GB SATA 500G * 2 (No Raid)

 Host 6 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 core) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 7 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 core) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 8 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 core) * 2 8 GB SATA 500G * 2 (No Raid)

 Host 9 Cent OS 4.7 (64-bit) Xeon 2.00 GHz (8 core) * 2 8 GB SATA 500G * 2 (No Raid)

CUBRID 2008 R4.1 QA Completion Report

9

 SQL/MEDIUM with valgrind test

 Dots on HA test

 Other tests

 Test for checking CUBRID 2008 R4.1 Patch1 functionalities/bug fixes

 Memory check by Valgrind

CUBRID 2008 R4.1 QA Completion Report

10

2.Test Results

CUBRID 2008 R4.1 QA Completion Report

11

 Functionality Test Results 2.1

 Basic Query Tests 2.1.1

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL

statements stored in 10928 files were tested to verify DBMS conformity. We executed the stored SQL

statements in a JDBC-based application and compared the results to the stored reference file for

verification.

Table 1. Result of Basic Query Tests

Test Category Number of Scenarios Number of Scenarios passed Pass Rate

SQL query test 8745 8745 100%

MEDIUM query test 970 970 100%

SITE query test 1213 1213 100%

 Basic Utility and Other Scenario Tests 2.1.2

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this

test was also performed to verify CUBRID utilities that could not be tested by using SQL statements. We

ran scenarios written by 582 shell scripts to verify DBMS conformity.

Table 2. Result of Basic Utility and Other Scenario Tests

Test Category Number of Scenarios Number of Scenarios passed Pass Rate

Utility 197 197 100%

Bug regression 290
290

100%

Environment variable 5 5 100%

Other 90 90 100%

 HA Feature Tests 2.1.3

Table 3. Result of HA Feature Tests

Test Category Number of Scenarios Number of Scenarios
passed

Pass Rate

Data replication test 5 5 100%

CUBRID 2008 R4.1 QA Completion Report

12

Bug regression 69
69

100%

Node fault test 16 16 100%

Process fault test 8 8 100%

Broker fault test 8 8 100%

Run replication test sce
narios

115 115 100%

CUBRID 2008 R4.1 QA Completion Report

13

 Performance Test Results 2.2

 CUBRID Basic Performance Test 2.2.1

This test was performed to check the performance of the CUBRID DBMS basic operations, which are

select, insert, update and delete. For more information about test scenarios, see the appendix. For all

environment variables, except for SQL_LOG=OFF in cubrid_broker.conf, default configuration values

were used. As shown in the table below, we have found the overall performance in Linux(64-bit/32-bit)

has been improved slightly, but for Windows 32-bit, the performance in all operations are not significant

improvement. It is needed to investigate it more in the future.

A. Linux: Performance Comparison between CUBRID 2008 R4.0 Patch2 and CUBRID
2008 R4.1 Patch1 (64-bit)

Figure 4. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Linux 64-bit)

Table 4. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Linux 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

 R4.0
P2

R4.1
P1

Perfor
mance
Ratio

Insert 53043 56736 107% 55652 58357 105% 54674 57969 106%

Update 63194 64515 102% 61797 63126 102% 63203 62429 99%

Select 67632 66787 99% 66809 65374 98% 67936 65992 97%

Delete 56850 55654 98% 54144 52811 98% 52055 51880 100%

Total 240719 243692 101% 238402 239668 101% 237868 238270 100%

(Unit: TPS)

30000

40000

50000

60000

70000

R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1

idx(a) idx(a,b) idx(a,b,c)

insert

update

select

delete

CUBRID 2008 R4.1 QA Completion Report

14

B. Linux: Performance Comparison between CUBRID 2008 R4.0 Patch2 (32-bit) and
CUBRID 2008 R4.1 Patch1 (32-bit)

We can find the performance has been improved slightly.

Figure 5. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Linux 32-bit)

Table 5. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Linux 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perform
ance

Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

Insert 49499 53517 108% 50659 54276 107% 49943 54207 109%

Update 58458 60656 104% 56956 60012 105% 57628 59476 103%

Select 62005 62605 101% 61530 62382 101% 62208 62386 100%

Delete 51751 52323 101% 49821 49924 100% 47476 48359 102%

Total 221713 229101 103% 218966 226594 103% 217255 224428 103%

(Unit: TPS)

C. Windows: Performance Comparison between CUBRID 2008 R4.0 Patch2(64-bit) and
CUBRID 2008 R4.1 Patch1 (64-bit)

We found that the performance of 64-bit R4.1 Patch1 is higher about 20% than that of 64-bit R4.0

Patch2.

30000

40000

50000

60000

70000

R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1

idx(a) idx(a,b) idx(a,b,c)

insert

update

select

delete

CUBRID 2008 R4.1 QA Completion Report

15

Figure 6. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Windows 64-bit)

Table 6. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Windows 64-bit)

 idx(a) idx(a,b) idx(a,b,c)

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

Insert 21935 28321 129% 21223 27004 127% 20543 28353 138%

Update 26661 30215 113% 26953 33574 125% 24948 31259 125%

Select 29740 32435 109% 27830 31962 115% 29402 32030 109%

Delete 22611 26273 116% 24463 25890 106% 20838 23913 115%

Total 100947 117244 116% 100469 118430 118% 95731 115555 121%

(Unit: TPS)

D. Windows: Performance Comparison between CUBRID 2008 R4.0 Patch2 (32-bit) and
CUBRID 2008 R4.1 Patch1 (32-bit)

We have found that there was no significant change in performance between 32-bit R4.0 Patch2 and 32-

bit R4.1 Patch1.

0

10000

20000

30000

40000

R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1

idx(a) idx(a,b) idx(a,b,c)

insert

update

select

delete

0

10000

20000

30000

40000

R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1 R4.0 P2 R4.1 P1

idx(a) idx(a,b) idx(a,b,c)

insert

update

select

delete

CUBRID 2008 R4.1 QA Completion Report

16

Figure 7. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Windows 32-bit)

Table 7. Performance Comparison between R4.0 Patch2 and R4.1 Patch1 (Windows 32-bit)

 idx(a) idx(a,b) idx(a,b,c)

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

R4.0
P2

R4.1
P1

Perfor
mance
Ratio

Insert 33803 32692 97% 32866 32432 99% 28855 29949 104%

Update 33960 34432 101% 35874 36012 100% 35505 35771 101%

Select 35394 35828 101% 35286 35345 100% 35464 35030 99%

Delete 36136 35105 97% 35354 34360 97% 33685 29892 89%

Total 139293 138057 99% 139380 138149 99% 133509 130642 98%

(Unit: TPS)

 YCSB Performance Test 2.2.2

YCSB as a framework for benchmarking system is popular in the world (see also https://github.com

/brianfrankcooper/YCSB/wiki). This test was performed to verify CUBRID performance not only basic but

also compositive operations, which are insert, select, scan, update and mix for them. For more

information about test scenarios, see the appendix II. As shown in the results below, we have found that

under master server configuration, the performance for update and insert operations got remarkable

improvement, and exceeded more than 60%. Under another slave server configuration, they also had

improvement but slightly. In addition, we also found that, for master server configuration, scan operation

regressed slightly. It is needed to investigate it more in the future.

A. Master Server Configuration: Performance Comparison between R4.0 Patch2 (64-bit)
and R4.1 Patch1 (64-bit)

CUBRID 2008 R4.1 QA Completion Report

17

Figure 8. Result of Insert Operation of YCSB Benchmark (Master Server)

Figure 9. Result of Select Operation of YCSB Benchmark (Master Server)

CUBRID 2008 R4.1 QA Completion Report

18

Figure 10. Result of Scan Operation of YCSB Benchmark (Master Server)

Figure 11. Result of Update Operation of YCSB Benchmark (Master Server)

CUBRID 2008 R4.1 QA Completion Report

19

Figure 12. Result of Mixed of YCSB Benchmark (Master Server)

Table 8. Result of YCSB Benchmark (Master Server)

 Throughput (ops/sec) 99th Percentile Latency (ms)

Operations R4.0 P2 R4.1 P1
Performance

Ratio
R4.0 P2 R4.1 P1

Performance
Ratio

Insert 4053 6756 167% 33 13 253%

Select 24512 24705 101% 3 3 100%

Scan 1162 1101 95% 68 67 101%

Update 4328 6933 160% 32 13 246%

Mix 4127 5223 126% 223 65 343%

B. Slave Server Configuration: Performance Comparison between R4.0 Patch2 (64-bit)
and R4.1 Patch1 (64-bit)

CUBRID 2008 R4.1 QA Completion Report

20

Figure 13. Result of Insert Operation of YCSB Benchmark (Slave Server)

Figure 14. Result of Select Operation of YCSB Benchmark (Slave Server)

CUBRID 2008 R4.1 QA Completion Report

21

Figure 15. Result of Scan Operation of YCSB Benchmark (Slave Server)

Figure 16. Result of Update Operation of YCSB Benchmark (Slave Server)

CUBRID 2008 R4.1 QA Completion Report

22

Figure 17. Result of Mixed of YCSB Benchmark (Slave Server)

Table 9. Result of YCSB Benchmark (Slave Server)

Throughput (ops/sec) 99th Percentile Latency (ms)

Operations R4.0 P2 R4.1 P1
Performance

Ratio
R4.0 P2 R4.1 P1

Performance
Ratio

Insert 7507 8496 113% 21 8 262%

Select 23923 24513 102% 3 3 100%

Scan 1009 1058 105% 78 73 106%

Update 7468 7693 103% 23 18 127%

Mix 5743 5715 100% 24 18 133%

 NBD Benchmark Performance Test 2.2.3

This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has

been developed to verify the performance of the general bulletin board application framework. The

scalability of the test DB was Level 1. As shown in the results below, there was not remarkable

improvement in NBD Benchmark test loads between R4.0 Patch2 and R4.1 Patch1. CUBRID R4.1 Patch1

is slightly higher than CUBRID R4.0 Patch2. The Page View improved about 5% in CUBRID 2008 R4.1

Patch1 than CUBRID 2008 R4.0 Patch2.

CUBRID 2008 R4.1 QA Completion Report

23

Table 10. Result of NBD Benchmark

Platform Version BIT Page View

Linux 64 CUBRID 2008 R4.0 P2 (Default parameter configured) 64-bit 1267

Linux 32 CUBRID 2008 R4.0 P2 (Default parameter configured) 32-bit 1287

Linux 64 CUBRID 2008 R4.1 P1 (Default parameter configured) 64-bit 1325

Linux 32 CUBRID 2008 R4.1 P1 (Default parameter configured) 32-bit 1291

The following graphs represent the usage rate of each resource while processing the NBD benchmark

test on Linux 64-bit.

CUBRID 2008 R4.1 QA Completion Report

24

 Stability Test Results 2.3

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the

DBMS. For more information about DOTS, see the appendix. As shown in the test results below, the

system operated stably without any abnormalities during the 24-hour load period. You can ignore the

fails because they are unique violations due to the modification of duplicate data.

CUBRID 2008 R4.1 QA Completion Report

25

 Other Test Results 2.4

All bug fixes resolved in CUBRID 2008 R4.1 Patch1 have been confirmed.

CUBRID 2008 R4.1 QA Completion Report

26

 Quality Index 2.5

The standard quality index of CUBRID 2008 R4.1 Patch1 is listed below.

Table 11. Quality Index of R4.1 Patch1

Quality Index
Name

Project

Quality
Standard

Approved

Quality
Index

during
Implementat
ion

Measurement Target

Coding Standards

Compliance Rate
100% 100%

Number of coding conventions observed in
a project

56

Number of coding conventions applied to
each team

56

Code Review

Execution Rate
100% 100%

Number of source code lines for which
code review is performed.

827,066 LOC

Total number of source code lines in the
changed files

827,066 LOC

QA Scenario

Code Coverage
75% 73.5%

Number of tested statements 170,523

Total number of statements 232,099

Fault Density
Detected by

Static Analysis

4

/KLOC

2.67

/KLOC

Number of faults detected by static
analysis (Level 1)

161

Number of faults detected by static
analysis (Level 2)

7

Number of faults detected by static
analysis (Level 3)

424

Number of faults detected by static
analysis (Level 4)

0

Total number of source code lines 809,205LOC

Cyclomatic Code
Complexity

3.3% 2.9%

Number of modules whose complexity is
over 30

563

Total number of modules in a project 19,121

12% 16.2% Number of modules whose complexity is
over 10

3,093

Total number of modules in a project 19,121

CUBRID 2008 R4.1 QA Completion Report

27

3. Conclusions

CUBRID 2008 R4.1 QA Completion Report

28

As described in Chapters 1 and 2, CUBRID 2008 R4.1 Patch1 has been tested in terms of its functionality,

performance, stability and other issues before its release.

The tests have been performed in the Linux 32-bit, Linux 64-bit, Windows 32-bit and Windows 64-bit
environments. All tests were executed, and the related defects have been logged into BTS for (32/64-bit)

on Linux/Windows.

Based on the results obtained through the basic performance test, we have found that the overall basic

performance of CUBRID 2008 R4.1 Patch1 was slightly improved than that of CUBIRD 2008 R4.0 Patch2 in
32/64bit Linux/Windows.

Based on the YCSB performance results, we have found that, under master server configuration, the

performance for update and insert operations got very remarkable improvement, and exceeded more than

60%. We can certainly say that this is the most significant changes in performance that CUBRID 2008 R4.1
Patch1 bring us. We are very excited that our customers can clearly feel the notable performance

improvement for massive insert and update operations because this is also default configuration after
installation. In addition, the other operations’ performance also show progressive result.

Based on the results obtained through the NBD benchmark test, we have found that there was slightly

improvement in performance between CUBRID 2008 R4.0 Patch2 and CUBRID 2008 R4.1 Patch1. The Page

View of CUBRID 2008 R4.1 Patch1 improved about 5% than that of CUBRID 2008 R4.0 Patch2.

CUBRID 2008 R4.1 QA Completion Report

29

Appendix

CUBRID 2008 R4.1 QA Completion Report

30

I. Functionality Test Scenarios

This test was performed to verify the basic DBMS functionalities by using SQL statements. SQL statements stored in files were

tested to verify DBMS conformity. We executed the stored SQL statements in a JDBC-based application, and compared the

results to the stored reference file for verification. The scenario files included in the basic functionality test are stored in the

SQL and MEDIUM directories of the CUBRID QA tool.

 SQL Query Test

Total: 8745

Case Name Path Description

object sql/_01_object
Performs functionality tests of objects supported by
CUBRID, and has the largest number of scenarios (3332
scenarios).

user_authorization sql/_02_user_authorization
Performs functionality tests of user and authorization
management.

object_oriented sql/_03_object_oriented
Performs tests for the object-oriented concept. CUBRID is
an object-relational database management system
(DBMS).

operator_function sql/_04_operator_function
Performs functionality tests of basic functions and
operators supported by CUBRID.

manipulation sql/_06_manipulation

Performs tests of the insert, update, delete, and select
statements, which are the most commonly used SQL
statements in DML. Basic statements, subqueries and
various join queries are tested.

misc sql/_07_misc
Performs functionality tests of DCL (Data Control
Language), including statistics update or other
functionalities.

javasp sql/_08_javasp Performs functionality tests of Java stored procedures.

64-bit sql/_09_64bit
Performs basic functionality test scenarios of the bigint and
datetime types

Connect_by sql/_10_connect_by Performs a test of the hierarchical query feature

Codecoverage sql/_11_codecoverage
Performs a test of uncovered codes based on the code
coverage results.

Syntax Extension sql/_12_mysql_compatibility Performs a test of the syntax extension.

BTS issues sql/_13_issues
Performs a test of known issues, which comes from issu
e management system.

MySQL compatibility sql/ _14_mysql_compatibility_2 Performs an unit test of the syntax extension 2.

FBO sql/ _15_fbo Performs a test of the FBO feature.

Index enhancement sql/ _16_index_enhancement Performs an unit test of the index enhancement.

SQL Extension sql/ _17_sql_extension2

Performs a test of the syntax extension 2. Includes a tes
t of syntax enhancements, system parameters, show st

atements, date/time functions, string functions, aggrega
te functions, other functions.

CUBRID 2008 R4.1 QA Completion Report

31

Index enhancement sql/ _18_index_enhancement_qa

Performs a test of the index enhancement. Includes a te
st of limit optimizing, using index clause enhancement,
descending index scan, covering index, ordering index,
optimizing group by clause, Index scan with like predic
ate, next key locking,etc.

 MEDIUM Query Test

Total: 970

Case Name Path Description

01_fixed medium/_01_fixed Performs regression test scenarios for bug fixes that have been
implemented since the initial version.

02_xtests medium /_02_xtests Performs test scenarios for functionalities supported by CUBRID,
but not by other DBMSs.

03_full_mdb medium /_03_full_mdb Performs test scenarios for sequential/index scan queries with an
index.

04_full medium /_04_full Performs test scenarios that include testing queries for limit values
of CUBRID.

05_err_x medium /_05_err_x Performs negative test scenarios for functionalities that are
supported by CUBRID, but not by other DBMSs.

06_fulltests medium /_06_fulltests Performs test scenarios for search queries with OIDs.

07_mc_dep medium /_07_mc_dep Includes a query that gives various conditions to a WHERE clause in
the SELECT query, and tests whether or not a correct result has
been selected.

08_mc_ind medium/_08_mc_ind Includes scenarios that test queries performing schema change.

 SITE Query Test

Total: 1213

Case Name Path Description

k_count_q site/k_count_q Retrieves count (*) results of a query that is included in the kcc_q query.

k_merge_q site/k_merge_q Forces to give a hint to the kcc_q queries allowing merge joins.

k_q site/k_q

Performs tests for OID reference, collection type, and path expression
that are part of the object-oriented concept supported by CUBRID with
different scalabilities. In addition, it performs functionality tests while
increasing the number of join participating tables.

n_q site/n_q
Performs tests for a complex query in which subqueries, outer/inner
joins or group-by queries are combined, and checks whether correct
results are retrieved.

 Utility (Shell) Test

This test was performed to verify the basic DBMS functionalities by using shell scripts. In particular, this test was also

performed to verify CUBRID utilities that cannot be tested by using SQL statements. We ran scenarios written using shell

scripts to verify DBMS conformity.

CUBRID 2008 R4.1 QA Completion Report

32

Total: 582

Case Name Path Description

utility shell/_01_utility
Includes a script that tests the database management
commands supported by CUBRID.

sqlx_init shell/_02_sqlx_init
Includes scenarios that change the configuration of CUBRID
DBMS parameters, and checks whether they are working
correctly.

itrack shell/_03_itrack

Includes scenarios that verify there is no regression by

checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

addition Shell/_05_addition
Includes scenarios added to improve code coverage and
mainly tests the options of CUBRID utilities.

BTS issues shell/_06_issues
Includes scenarios that verify there is no regression by
checking the bug fixes in CUBRID, and stores scenarios that
cannot be tested by SQL.

Index enhancement shell/_07_index_enhancement

Includes scenarios that verify next key lock and change the
configuration of CUBRID DBMS related to index
enhancement, which has been added in CUBRID 2008 R4.0
Beta.

MySQL compatibility shell/_23_mysql_compatibility
Includes scenarios that verify syntax extension, which has
been added in CUBRID 2008 R3.1.

 HA Feature Test

Total: 221

Case Name Path Description

Data replication test
execp/UsualCase

Includes scenarios that check whether HA replication is properly
performed in a normal state with no fault.

Node fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a node fault occurs during insert/update/delete
operations.

Process fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a process fault occurs that causes the database process
to stop during insert/update/delete operations.

Broker fault test execp/UsualCase Includes scenarios that check whether HA replication is properly
performed when a broker fault occurs during insert/update/delete
operations.

Replication scenario scripts/sql Includes scenarios that test whether HA is working properly for each
CUBRID transaction type, and has two sub directories: random_case and
special_case

Bug regression HA/shell/ Includes scenarios that verify there is no regression by checking the HA
bug fixes in CUBRID

CUBRID 2008 R4.1 QA Completion Report

33

II. Performance Test Scenario

 CUBRID Basic Performance Test

To evaluate the basic performance of DBMS, the following 5 variables were used. Database Server,

Broker, and Load Generator were run on a single server.

 Number of data (or number of program loops)

 Total number of data: 900,000 items

 Number of program loops: 100,000 loops/program (900,000 items)

 COMMIT Interval

- After every execution

- After 100 executions

- After 1,000 executions

 Number of concurrent users

- 5 users

- 10 users

 Number of index attributes

- create index idx1 on xoo(a)

- create index idx2 on xoo(a,b)

- create index idx3 on xoo(a,b,e)

 Interface

- JDBC (Dynamic SQL): Prepared statements were used.

 Test data

 Test schema

CREATE TABLE xoo (
 a int,
 b int,
 c int,
 d int,
 e char(10),
 f char(20),
 g char(30)
)

CREATE INDEX idx1 on xoo(a);
CREATE INDEX idx2 on xoo(a,b);
CREATE INDEX idx3 on xoo(a,b,e);

CUBRID 2008 R4.1 QA Completion Report

34

 Test data

Enter data from 1 to 450,000; total number of data is 900,000.

 How to perform a test

 Insert/update/select/delete data from a specific number.

 For concurrent user tests, the start and end numbers are defined to prevent data from overlapping,

in order to ensure that there is no competition between the concurrent clients.

 For concurrent user test programs, a JDBC test program is tested with a multi-threaded program,

and a C program is tested with a multi-process program.

 If the number of loops is 10,000, a user repeats execution 10,000 times in the case of the 1-user

test, and each user repeats execution 2,000 times in the case of the 5-user test. Similarly, if the

number of loops is 100,000, a user repeats execution 100,000 times in the case of the 1-user test,

and each user repeats execution 20,000 times in the case of the 5-user test.

 How to measure test results

 Measure the number of loops per second.

 For concurrent user tests, add the execution times of all users.

 YCSB Benchmark

This test was performed to verify CUBRID performance not only basic but also compositive operations, which

are insert, select, scan, update and mix for them.

 Common Test Environment

 Test Servers

 CUBRID database volume configuration

CUBRID Server

IP: 10.34.64.204
CentOS 4.7(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5405@ 2.00GHz *1 (8 core)
Memory: 8G

YCSB

IP: 10.34.64.201
CentOS 4.7 (64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5405@ 2.00GHz *1 (8
core)
Memory: 8G
java version "1.6.0_11"

CUBRID Broker

IP: 10.34.64.202
CentOS 4.7(64bit)
Hard Disk: 1000G
Intel(R) Xeon(R) CPU
E5405@ 2.00GHz *1 (8
core)
Memory: 8G

CUBRID 2008 R4.1 QA Completion Report

35

cubrid createdb ycsb
cubrid addvoldb -p data --db-volume-size=2G ycsb -S
cubrid addvoldb -p data --db-volume-size=2G ycsb -S
cubrid addvoldb -p index --db-volume-size=2G ycsb -S
cubrid addvoldb -p index --db-volume-size=2G ycsb -S
cubrid addvoldb -p temp --db-volume-size=2G ycsb –S

 Use default CUBRID broker configuration except below:

 cubrid_broker.conf: sql_log=OFF

 Workload configuration on YCSB

 Insert operation (load)

- recordcount=10000000

- operationcount=10000000

- workload=com.yahoo.ycsb.workloads.CoreWorkload

- readallfields=true

- readproportion=0

- updateproportion=0

- scanproportion=0

- insertproportion=1

- requestdistribution=zipfian

- threads=40

- fieldlength=10

 Select operation

- recordcount=10000000

- operationcount=10000000

- workload=com.yahoo.ycsb.workloads.CoreWorkload

- readallfields=true

- readproportion=1

- updateproportion=0

- scanproportion=0

- insertproportion=0

- requestdistribution=zipfian

CUBRID 2008 R4.1 QA Completion Report

36

- threads=40

- fieldlength=10

 Scan operation

- recordcount=10000000

- operationcount=100000

- workload=com.yahoo.ycsb.workloads.CoreWorkload

- readallfields=true

- readproportion=0

- updateproportion=0

- scanproportion=1

- insertproportion=0

- requestdistribution=zipfian

- threads=40

- fieldlength=10

 Update operation

- recordcount=10000000

- operationcount=1000000

- workload=com.yahoo.ycsb.workloads.CoreWorkload

- readallfields=true

- readproportion=0

- updateproportion=1

- scanproportion=0

- insertproportion=0

- requestdistribution=zipfian

- threads=40

- fieldlength=10

 Mix operation

- recordcount=10000000

- operationcount=1000000

- workload=com.yahoo.ycsb.workloads.CoreWorkload

- readallfields=true

CUBRID 2008 R4.1 QA Completion Report

37

- readproportion=0.3

- updateproportion=0.3

- scanproportion=0.1

- insertproportion=0.3

- requestdistribution=zipfian

- threads=40

- fieldlength=10

 Test data on master server configuration

 CUBRID server configuration

 async_commit=no

 group_commit_interval_in_msecs=0

 data_buffer_size=4G

 Test schema

CREATE TABLE usertable (
 userkey CHARACTER VARYING(100) PRIMARY KEY,
 field1 CHARACTER VARYING(100),
 field2 CHARACTER VARYING(100),
 field3 CHARACTER VARYING(100),
 field4 CHARACTER VARYING(100),
 field5 CHARACTER VARYING(100),
 field6 CHARACTER VARYING(100),
 field7 CHARACTER VARYING(100),
 field8 CHARACTER VARYING(100),
 field9 CHARACTER VARYING(100),
 field10 CHARACTER VARYING(100)
);

 Test data on slave server configuration

 CUBRID server configuration

 async_commit=yes

 group_commit_interval_in_msecs=1000

 data_buffer_size=4G

 Test schema

CUBRID 2008 R4.1 QA Completion Report

38

Create table usertable (
userkey CHARACTER VARYING(100) PRIMARY KEY,
 field1 CHARACTER VARYING(100),
 field2 CHARACTER VARYING(100),
 field3 CHARACTER VARYING(100),
 field4 CHARACTER VARYING(100),
 field5 CHARACTER VARYING(100),
 field6 CHARACTER VARYING(100),
 field7 CHARACTER VARYING(100),
 field8 CHARACTER VARYING(100),
 field9 CHARACTER VARYING(100),
 field10 CHARACTER VARYING(100)
)
CREATE INDEX ink2_usertable ON usertable (userkey, field1);
CREATE INDEX ink3_usertable ON usertable (userkey, field1, field2);

 Statements to be tested

 Insert operation

INSERT INTO usertable (userkey, field1, field2, field3, field4, field5, field6, field7, field8, field9, field10)
VALUES (?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?);

 Select operation

SELECT * FROM usertable WHERE userkey = ?;

 Scan operation

SELECT * FROM usertable WHERE userkey >= ? LIMIT ?;

 Update operation

UPDATE usertable set field1=?, field2=?, field3=?, field4=?, field5=?, field6=?, field7=?, field8=?, field9=?, field10=? WHERE
userkey = ?;

 Mix operation

 Select operation: 30%

 Update operation: 30%

 Scan operation: 10%

 Insert operation: 30%

 NBD Benchmark

This test was performed to verify CUBRID performance by using the NBD Benchmark tool, which has been

developed to verify the performance of the general bulletin board application framework. For more

information about NBD Benchmark, see separate documents.

CUBRID 2008 R4.1 QA Completion Report

39

III. Stability Test Scenario

DOTS, a sub-project of an open project called "Linux Test Project," is an open test tool for testing the DBMS.

 Test Related Schema (the Number of Data in Each Table)

CREATE TABLE REGISTRY (
 USERID CHAR(15) NOT NULL PRIMARY KEY,
 PASSWD CHAR(10),
 ADDRESS CHAR(200),
 EMAIL CHAR(40),
 PHONE CHAR(15)
);

CREATE TABLE ITEM (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 SELLERID CHAR(15) NOT NULL,
 DESCRIPTION VARCHAR(250) ,
 BID_PRICE FLOAT,
 START_TIME DATE,
 END_TIME DATE,
 BID_COUNT INTEGER
);

CREATE TABLE BID (
 ITEMID CHAR(15) NOT NULL PRIMARY KEY,
 BIDERID CHAR(15) NOT NULL,
 BID_PRICE FLOAT,
 BID_TIME DATE
);

 Data Size and How to Create Data

The initial number of data when starting the test is 0. Enter 1000 of data in the REGISTRY table. Next,

enter 100 of data in the ITEM table as well as in the bid table. Then, update 100 times.

 Transaction types

 INSERT transaction 1

INSERT INTO ITEM (ITEMID,SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT)
VALUES (?, ?, ? ,?, ?, ?, ?)

 INSERT transaction 2

INSERT INTO BID (ITEMID,BIDERID,BID_PRICE,BID_TIME)
VALUES (?, ?, ?, ?)

 SELECT transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID = ?

CUBRID 2008 R4.1 QA Completion Report

40

 SELECT transaction 2

SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?
SELECT BIDERID, BID_PRICE, BID_TIME FROM BID WHERE ITEMID = ?

 UPDATE transaction 1

SELECT SELLERID,DESCRIPTION,BID_PRICE,START_TIME,END_TIME,BID_COUNT
FROM ITEM WHERE ITEMID =
UPDATE ITEM SET DESCRIPTION = ?,BID_PRICE = ?,START_TIME = ?,END_TIME = ? WHERE ITEMID = ?

 How to Generate Load

 How to generate load

Use two threads to generate the initial load. Each thread repeats the insert/select/update queries

mentioned above. The DOTS program checks CPU usage every 5 minutes. If the Peak CPU usage does

not exceed 100%, the test continues, by adding two more threads.

CUBRID 2008 R4.1 QA Completion Report

41

IV. Scenario-based Code Coverage Results

	1. Test Overview
	1.1 Test Objectives
	1.2 Test Environment
	1.1.1
	1.2.1 Test Procedures
	1.2.2 Hardware Test Environment

	1.3 Test Category

	2. Test Results
	2.1 Functionality Test Results
	1.1.1
	2.1.1 Basic Query Tests
	2.1.2 Basic Utility and Other Scenario Tests
	2.1.3 HA Feature Tests

	2.2 Performance Test Results
	2.2.1 CUBRID Basic Performance Test
	A. Linux: Performance Comparison between CUBRID 2008 R4.0 Patch2 and CUBRID 2008 R4.1 Patch1 (64-bit)
	B. Linux: Performance Comparison between CUBRID 2008 R4.0 Patch2 (32-bit) and CUBRID 2008 R4.1 Patch1 (32-bit)
	C. Windows: Performance Comparison between CUBRID 2008 R4.0 Patch2(64-bit) and CUBRID 2008 R4.1 Patch1 (64-bit)
	D. Windows: Performance Comparison between CUBRID 2008 R4.0 Patch2 (32-bit) and CUBRID 2008 R4.1 Patch1 (32-bit)

	2.2.2 YCSB Performance Test
	A. Master Server Configuration: Performance Comparison between R4.0 Patch2 (64-bit) and R4.1 Patch1 (64-bit)
	A.
	B. Slave Server Configuration: Performance Comparison between R4.0 Patch2 (64-bit) and R4.1 Patch1 (64-bit)

	2.2.3 NBD Benchmark Performance Test

	2.3 Stability Test Results
	2.4 Other Test Results
	2.5 Quality Index

	3. Conclusions
	Appendix
	I. Functionality Test Scenarios
	II. Performance Test Scenario
	III. Stability Test Scenario
	IV. Scenario-based Code Coverage Results

